COMMISSION
G: IONOSPHERIC RADIO AND PROPAGATION
G1.
Ionospheric Observation Techniques
G1.1.
Application of GPS to Ionospheric studies
A
dense GPS receiver network, GPS Earth Observation Network (GEONET), in which
about 1200 receivers cover
G1.2.
Multiple Instruments and Campaigns
National
Institute of Information and Communications Technology (NICT) is conducting
Alaska Project in collaboration with Geophysical Institute,
FRONT
Nighttime
TIDs and F-region ionospheric
irregularities were simultaneously observed in an observation campaign named
FRONT (F-region Radio and Optical measurement of the Nighttime TID). Saito et
al. [2002] led the first FRONT campaign in May 1998. They employed the MU
radar, a GPS receiver network (GEONET), and a network of 630-nm all-sky
imagers. The observations were quite successful in finding a close relationship
between the wavelike structures of F-region field-aligned irregularities (FAIs) and medium-scale TIDs (MS-TIDs). There was the FRONT 2 campaign in August 1999 by
adding another 630-nm all-sky imager in
WAVE2000
Iwagami et al. [2002] conducted WAVE2000 (Waves
in Airglow Structures Experiment over
Coupling
Processes in the Equatorial Atmosphere (CPEA)
A large
VHF radar, Equatorial Atmosphere Radar (EAR), was installed in 2001 right on
the equator in West Sumatra, Indonesia (0.20‹S, 100.32‹E) [Fukao
et al., 2003a]. gCoupling Processes in the Equatorial Atmosphere (CPEA)h is a
research program funded by the Japanese Ministry of Education, Culture, Sports,
Science and Technology (MEXT) as a Grant-in-Aid for Scientific Research on
Priority Areas in the period from September 2001 to March 2007. CPEA studies
dynamical coupling processes in the equatorial atmosphere by conducting various
observations in the Indonesian equatorial region. EAR is the core facility for
the program. As the geomagnetic latitude of the EAR site is 10.36‹N, it is a suitable
location for investigating the low latitude ionosphere in the southern
hemisphere [e.g., Fukao et al., 2003b].
SEEK-2
SEEK-2
(Sporadic-E Experiment over
On-going
experiment and future plans
FERIX
(F-region and E-region Coupling Study) is an on-going experiment to study electrodynamical coupling processes between ionospheric F-
and E-regions. In June-August 2004, the MU radar observed the F-region FAIs and a portable radar observed
the E-region FAIs. Both scattering volumes were
connected with the same geomagnetic field line. The results showed clear
correlation between FAIs in the both regions. In 2005
similar experiment continues with the MU radar and GEONET. Coordinated
rocket-ground experiment in summer 2007 is proposed, which aims to study
seeding mechanisms of MS-TIDs. Lithium-release from
the rocket will be conducted to measure the neutral winds in the F-region. Mesosphere-Thermosphere-Ionosphere
(MTI) satellite working group is planning a small-satellite mission to study
MLT and F-regions at low- and midlatitudes by observing
airglow emissions from the Earthfs upper atmosphere. The project was formally
proposed to JAXA in January 2005.
G1.3.
Other Techniques
There
were developments of radio/optical techniques to measure the ionosphere and MLT
regions. Maruyama [2002] developed a technique to estimate in-situ electron
density in the topside ionosphere from the cosmic radio-noise intensity
measurements by the satellite. During the Leonid meteor shower in November
2001, Maruyama et al. [2003] ran the ionosondes in a
rapid-run mode and found meteor-induced Es patches. Nakamura et al. [2002]
conducted meteor echo observations with the MU radar, and showed that it is possible
to measure spatial changes in the wind velocity field by dividing the echoing
region into four azimuth sectors. Radar echoes from the mesosphere are not
fully understood. Kubo et al. [2002] carefully analyzed the MU radar data and
constructed an empirical model for the mesospheric VHF radio wave scattering. Shiokawa et al. [2003c] developed a two-channel Fabry-Perot interferometer with thermoelectric-cooled CCD
detectors. The system is able to measure neutral winds in the mesopause region at 558 nm and in the thermosphere at 630
nm, automatically operated in the MU radar site in
G2.
Ionospheric Structure and Disturbances
G2.1.
Polar Ionosphere
Many studies using European Incoherent SCATter (EISCAT) radar has been published in this period. Fujii et al. [2002] determined the characteristics of
field-aligned ion motions in the E and F region ionosphere. Maeda et al. [2002]
investigated ion and neutral temperature profiles in the E-region between 105
and 115 km, and compared the results with precipitating particles observed with
the DMSP satellite. Nozawa et al. [2002] had a
comparative study of the neutral wind in the polar upper mesosphere/lower
thermosphere using two radars, EISCAT UHF radar and Tromso
MF radar. Nozawa et al. [2003a] examined
characteristics of the quasi 2-day waves in the polar mesosphere using the same
set of instruments. Nozawa et al. [2003b] compared
the quasi 2-day wave observed at Tromso and Poker
Flat MF radars. Fujiwara et al. [2004] estimated turbulent and electromagnetic
energy dissipation rates in the altitude range of 98-116km using data obtained by
the EISCAT radar.
Super Dual Auroral Radar
Network (SuperDARN) is an international collaborative
project based on the network of coherent HF radars in the Northern and
Ishii et al. [2002, 2003, 2004] studied
thermosphere-ionosphere coupling (TI coupling), especially vertical winds in
the thermosphere on the vicinity of aurora using Fabry-Perot
interferometers. Oyama et al. [2001a,b] discussed possibilities that these TI coupling is a
source of gravity waves. Oyama et al. [2003, 2004,
2005] discussed TI coupling from the observed ion motion with IS radars in the
polar region. Kubota et al. [2003] discovered a new type of auroras which do
not change their shapes for several hours with high-sensitive all-sky imagers,
and the phenomenon was named gco-rotating patchesh. Lummerzheim
et al. [2003] also used the instruments for understanding the mechanism of
proton auroras. Mori et al. [2004] studied characteristics of precipitating
electrons with the energy range of 40-80 keV using a
16x16 imaging riometer.
Sakanoi et al. [2004] investigated the generation
mechanisms of flickering auroras with a high-speed imaging photometer system. Shiokawa et al. [2005a] reported that a total of 20
low-latitude aurora events in
G2.2.
Midlatitude Ionospheric
Structure
Many
types of variations in the Sq field such as seasonal, year-to-year, and
day-to-day variations are known to exist. Takeda [2002a,b]
studied seasonal and year-to-year variations of geomagnetic Sq field using the
global equivalent current system. It was found that the Sq current intensity in
the solar minimum period is about half that in the solar maximum period and its
year-to-year variation is relatively smooth. Takeda et al. [2003] examined
relationships of the geomagnetic Sq field to the electric field, conductivity,
and currents in the ionosphere.
F2
layer electron density strongly depends upon the solar EUV flux, thermospheric
concentration, temperature, and wind. Zhang et al. [2002, 2003] explored a
method for inferring solar EUV flux, atmospheric composition and wind using
ionospheric electron density profile measurements. Incoherent scatter radar
data from Millstone Hill and Shigaraki were
assimilated into a theoretical model, which was used to derive EUV flux and [O]/[N2] from electron density profiles.
Kawamura
et al. [2002] studied the annual and semiannual variations of the midlatitude ionosphere under low solar activity using MU
radar and a plasmasphere-ionosphere model. The study showed that the variations
of the daytime midlatitude ionosphere near and above
the ionospheric peak depend more on the neutral wind than on the thermospheric
composition.
G2.3.
Midlatitude Ionospheric
disturbances
Ionospheric storms
Signatures
of upper atmospheric disturbances during a major magnetic storm were studied by
the MU radar, MF radar, optical imager, and GPS-derived TEC [Balan et al., 2004]. Kutiev et
al. [2005] analyzed TEC data for 2000-2002, and found that TEC behavior during
the storms is similar to that of foF2. While, Maruyama et al. [2004] found that
positive TEC and negative foF2 disturbances could simultaneously occur in some
time intervals of storms. Tsurutani et al. [2004]
also analyzed global characteristics of ionospheric
uplift and TEC changes during a large magnetic storm. Pavlov et al. [2004a]
compared the electron density measured by the MU radar and modeled electron
density during a magnetic storm.
Traveling
ionospheric disturbances
Airglow
images over
Neutral
wind fields associated with an equatorward traveling large scale TIDs (LS-TIDs) were investigated
by using multiple instrumental technique [Shiokawa et
al., 2002b, 2003d]. While, Tsugawa et al. [2003,
2004] clarified temporal and spatial characteristics of LS-TIDs
based on the TEC data obtained by GEONET during the periods of geomagnetic
disturbance.
Otsuka et al. [2003] investigated another type
of ionospheric disturbances called
Sporadic
E and irregularities
Ogawa
et al. [2002d] conducted simultaneous observation of E-region FAIs with the MU radar and Es layers with ionosondes. They found that quasi-periodic (QP) structures
of the FAIs were enhanced when foEs-fbEs
increased, which means that the FAI generation is closely related to localized density gradients within the Es layers. With the
MU radar, Hysell et al. [2002a] carried out imaging
observations of E-region FAIs, and found fine
structures of QP echoes. Kagan et al. [2004] studied the
Doppler shift of FAI radar echoes, and determined contribution from the neutral
winds and electric fields. An observation campaign, SEEK-2 (Sporadic-E
Experiment over
Spatial
structures of Es layers and polarization electric fields are important to know
generation mechanism of the QP structures of the FAIs.
Hysell et al. [2002b] simulated three-dimensional
clouds of enhanced plasma density with a background electric field imposed by
the F-region dynamo. If the clouds are smaller than about 1 km, the
polarization electric field can be large enough for the FAI onset. Yokoyama et
al. [2003] conducted two-dimensional simulation with rod-like enhancements of
plasma density and found that polarization electric fields are induced by the
neutral winds as well as by the background electric field. They showed that the
induced polarization electric field maps upward along the magnetic field line,
and form secondary plasma structures up to 120 km altitudes. Yokoyama et al.
[2004a] found that Pedersen conductivity of the F-region strongly affects the
polarization mechanism in the E-region by the 3-D numerical simulations. Cosgrove
et al. [2004] studied the electrodynamical coupling
processes and showed that the Perkins instability in the midlatitude
F-region would be enhanced by the coexisting E-region instability with the same
horizontal alignment.
G2.4.
Equatorial Ionosphere
Plasma
bubbles and ionospheric instability were studied by the Equatorial Atmosphere
Radar (EAR), airglow imager, and ionosondes. The 47-MHz
EAR located in West Sumatra, Indonesia has a capability of observing FAIs in multiple directions, in which radar beams
perpendicularly intersect the magnetic field lines. Range-time-intensity (RTI)
plots of radar backscattering for each beam revealed true spatial structure and
evolution of plasma bubbles. Onsets of plasma bubbles near sunset [Yokoyama et
al, 2004b] and sunrise [Fukao et al., 2003a]
terminators and spatial structure of evening bubbles [Fukao
et al., 2004] were diagnosed. Otsuka et al. [2004b]
compared the radar backscattering with all-sky airglow images and found
coexistence of small scale irregularities and airglow depletions. Optical
imaging technique was used for the study of plasma bubbles not only in the equatorial
region but also in the main islands of
G2.5.
Ionosphere-Neutral Atmosphere Coupling
Dynamical
behavior of the MLT region is very important to understand physics in the
ionosphere. The all-sky imager of OH band (720-910 nm) and OI (557.7 nm)
nightglow is a powerful instrument to study gravity waves in the MLT region. Ejiri et al. [2002] conducted dual-site imaging
observations and determined the true altitude of the nightglow layers.
Statistical studies of the gravity waves were carried out for
Global
behavior of planetary waves with periodicities of 4-10 days was studied with a network
of MF and meteor radars [Isoda et al., 2002;
Lieberman et al., 2003]. Tsuda et al. [2002] studied
long-term variations of the equatorial atmospheric waves, i.e., Kelvin waves,
by means of MF radars in the equatorial Pacific. Long-period wind data set from
the meteor radar in
G3.
Ionospheric Modeling
G3.1.
Earthfs Ionosphere
Numerical
modeling is a useful tool for studying ionospheric disturbances. Pavlov et al.
[2004a,b] used a model of the low- and midlatitude ionosphere and plasmasphere to study the
ionosphere during magnetic storms. Mechanisms causing the morning and evening
peaks in the electron temperature were discussed. Zhang et al. [2004] used a
one-dimensional high-latitude ionospheric model to study the conductivities in auroral regions where electrojets
exist. Shinagawa et al. [2003] developed a nonhydrostatic
thermosphere-ionosphere model to study high-latitude disturbances.
Thermospheric winds near a moving auroral arc were
simulated. Miyoshi and Fujiwara [2003] developed a new general circulation
model (GCM), which contains the region from the ground surface to the exobase. The results showed that day-to-day variations of
the migrating diurnal tide are evident from the upper troposphere to the
thermosphere. Kamide et al. [2003] described the
Global Environment Data Analysis System (GEDAS) developed at the
Solar-Terrestrial Environment Laboratory,
G3.2.
Planetary Ionosphere
A
two-dimensional global hybrid model was developed by Terada et al. [2002, 2004]
to study kinetic processes associated with the solar wind interaction with the
Venus ionosphere. The entire solar wind-Venus ionosphere region was included
kinetically by applying boundary fitted coordinates to the particle-in-cell
code. It was found that the Kelvin-Helmholtz
instability occurred at the Venus ionopause plays an
important role in the ion escape from the planet. Recent progress in modeling
the planetary ionospheres was reviewed by Shinagawa [2004] and Kallio and Shinagawa [2004].
References
Balan, N., Y. Otsuka, T. Tsugawa, S. Miyazaki,
T. Ogawa, K. Shiokawa, and G. J. Bailey [2002], gPlasmaspheric electron content in the GPS ray paths over
Japan,h Earth Planets Space, vol.54, pp.71-79.
Balan, N., S.
Kawamura, T. Nakamura, M. Yamamoto, S. Fukao, K.
Igarashi, T. Maruyama, K. Shiokawa, Y. Otsuka, T. Ogawa, H. Alleyne, S.
Watanabe, and Y. Murayama [2004], gSimultaneous mesosphere/lower
thermosphere and thermospheric F region observations during geomagnetic storm,h
J. Geophys. Res., vol.109, doi:10.1029/2003JA009982.
Cosgrove, R. B., R. T. Tsunoda, S. Fukao and M. Yamamoto
[2004], gCoupling of the Perkins instability and the sporadic E layer
instability derived from physical arguments,h J. Geophys.
Res., vol.109, A06301, doi:10.1029/2003JA010295.
Ejiri, M. K., K. Shiokawa, T. Ogawa, M. Kubota, T. Nakamura, and T. Tsuda [2002], gDual-site imaging observations of
small-scale wave structures through OH and OI nightglow emissions,h Geophys. Res. Lett., vol.29, no.10,
1445, doi:10.1029/2001GL014257.
Ejiri, M. K., K. Shiokawa, T. Ogawa, K. Igarashi, T. Nakamura, and T. Tsuda [2003], gStatistical study of short-period gravity
waves in OH and OI nightglow images at two separated sites,h J. Geophys. Res., vol.108, no.D21, 4679, doi:10.1029/2002JD002795.
Fujii, R., S. Oyama, S.
C. Buchert, S. Nozawa, and
N. Matuura [2002], gField-aligned ion motions in the
E and F region,h J. Geophys. Res., vol.107, doi:10.1029/
2001JA900148.
Fujiwara, H., S. Maeda, M. Suzuki, S. Nozawa, and H. Fukunishi [2004], gEstimates
of electromagnetic and turbulent energy dissipation rates under the existence
of strong wind shears in the polar lower thermosphere from the European
Incoherent Scatter (EISCAT) Svarlbard radar
observations,h J. Geophys. Res., vol.109, A07306, doi:10.1029/2003JA010046.
Fukao, S., H.
Hashiguchi, M. Yamamoto, T. Tsuda, T. Nakamura, M. K.
Yamamoto, T. Sato, M. Hagio, and Y. Yabugaki [2003a], gEquatorial atmosphere radar (EAR):
System description and first results,h Radio Sci., vol.38,
no.3, 1053, doi:10.1029/2002RS002767.
Fukao,
S., Y. Ozawa, M. Yamamoto, and R. T. Tsunoda [2003b],
gAltitude-extended equatorial spread F observed near sunrise terminator over
Fukao,
S., Y. Ozawa, T. Yokoyama, M. Yamamoto, and R. T. Tsunoda
[2004], gFirst observations of spatial structure of 3-m-scale field-aligned
irregularities with the equatorial atmosphere radar in
Hocke, K. and K.
Igarashi [2002], gStructure of the Earthfs lower ionosphere observed by GPS/MET
radio occultation,h J. Geophys. Res., vol.107, no.A5,
1057, doi:10.1029/2001JA900158.
Hocke,
K., T. Tsuda, and A. de la Torre
[2002a], gA study of stratospheric GW fluctuations and sporadic E at midlatitudes with focus on possible orographic
effect of
Hocke, K., K.
Igarashi, and A. Pavelyev [2002b], gIrregularities of
the topside ionosphere observed by GPS/MET radio occultation,h Radio Sci., vol.37, 1101, doi:10.1029/2001RS002599.
Hosokawa, K, T. Iyemori,
A. S. Yukimatu, and N. Sato [2001], gSource of
field-aligned irregularities in the subauroral F
region as observed by the SuperDARN radars,h J. Geophys. Res., vol.106, no.A11, pp.24,713-24,731.
Hosokawa, K., E. E. Woodfield,
M. Lester, S. E. Milan, N. Sato, A. S. Yukimatu, and
T. Iyemori [2002a], gStatistical characteristics of
Doppler spectral width as observed by the conjugate SuperDARN
radars,h Ann. Geophys., vol.20, pp.1213-1223.
Hosokawa, K., M. Sugino,
M. Lester, N. Sato, A. S. Yukimatu, and T. Iyemori [2002b], gSimultaneous measurement of duskside subauroral
irregularities from the CUTLASS
Hosokawa, K., E. E. Woodfield,
M. Lester, S. E. Milan, N. Sato, A. S. Yukimatu, and
T. Iyemori [2003], gInterhemispheric
comparison of spectral width boundary as observed by the SuperDARN
radars,h Ann. Geophys., vol.21, pp.1553-1565.
Hosokawa, K., S. Yamasita,
P. Stauning, N. Sato, A. S. Yukimatu
and T. Iyemori [2004a], gOrigin of the SuperDARN broad Doppler spectra: Simultaneous observation
with Oersted satellite magnetometer,h Ann. Geophys., vol.22, pp.159-168.
Hosokawa, K., T. Ogawa, N. Sato, A. S. Yukimatu, and T. Iyemori [2004b],
gStatistics of Antarctic mesospheric echoes observed with the SuperDARN Syowa radar,h Geophys.
Res. Lett., vol.31, doi:10.1029/2003GL018776.
Hosokawa, K., T. Ogawa, N. F. Arnold, M. Lester,
N. Sato, and A. S. Yukimatu [2005], gExtraction of
polar mesosphere summer echoes from SuperDARN data,h Geophys. Res. Lett., vol.32, doi:10.1029/2005GL022788.
Hysell,
D. L., M. Yamamoto, and
Hysell, D. L., M.
Yamamoto, and S. Fukao [2002b], gSimulations of
plasma clouds in the midlatitude E region ionosphere with
implications for type I and type II quasiperiodic
echoes,h J. Geophys. Res., vol.107, no.A10, 1313, doi:10.1029/2002JA009291.
Ishii M., S. Okano, E. Sagawa, Y. Murayama, S. Watari, M. Conde, and R. W. Smith [2002], gDevelopment of CRL Fabry-Perot interferometers and observation of the
thermosphere,h J. Comm. Res. Lab., vol.49, pp.173-184.
Ishii M., M.
Conde, R. W. Smith, M. Krynicki,
E. Sagawa, and S. Watari [2003], gA comparison
between vertical winds in the lower thermosphere and magnetic field
perturbations on the ground,h Adv. Polar Upper Atmos.
Res., no.17, pp.137-145.
Ishii M., M. Kubota, M. Conde,
R. W. Smith, and M. Krynicki [2004], gVertical wind
distribution in the polar thermosphere during HEX campaign,h J. Geophys. Res., vol.109, A12311, doi:10.1029/2004JA010657.
Isoda, F., T. Tsuda, T. Nakamura, Y. Murayama,
K. Igarashi, R. A. Vincent, I. M. Reid, A. Nuryanto, and
S. L. Manurung [2002], gLong-period wind oscillations
in the mesosphere and lower thermosphere at Yamagawa (32 degrees N,131 degrees E), Pontianak (0
degrees N, 109 degrees E) and Christmas Island (2 degrees N, 157 degrees W),h J.
Atmos. Sol.-Terr. Phys., vol.64,
pp.1055-1067.
Iwagami, N., T. Shibaki, T. Suzuki, Y. Yamada, H. Ohnishi, Y. Takahashi, H.
Yamamoto, H. Sekiguchi, K. Mori, Y. Sano, M. Kubota, Y. Murayama, M. Ishii, K-I. Oyama, R. Yoshimura, M. Shimoyama, Y. Koizumi, K. Shiokawa,
N. Takegawa and T. Nakamura [2002], gThe Wave2000
campaign: Overview and preliminary results,h J. Atmos.
Sol.-Terr. Phys., vol.64, pp.1095-1104.
Kagan,
L. M., S. Fukao, M. Yamamoto, and P. B. Rao [2004], gObservation of neutral winds and electric
fields using backscatter from field-aligned irregularities,h Int. J. Geomagn. Aeronom., vol.5, GI1003, doi:10.1029/2003GI000056.
Kallio,
E., and H. Shinagawa, Editors [2004], gPlanetary Atmospheres, Ionospheres, and
Plasma Interactions,h Adv. Space Res., vol.33, no.2, pp.121-241.
Kamide,
Y., S. Masuda, H. Shirai, H.-J.
Kim, T. Ogino, H. Shinagawa, M. Kojima, E. A. Kihn, and A. J. Ridley [2003], gThe Geospace
Environment Data Analysis System,h Adv. Space Res., vol.31, no.4, pp.807-812.
Kawamura, S., N. Balan,
Y. Otsuka, and
Koizumi, Y., K.-I. Oyama, and Y. Murayama [2003],
gSmall-scale atmospheric gravity wave observed by foil chaff experiment in the mesopause region,h ISAS Research Note 758.
Koizumi Y., M. Shimoyama,
K. Oyama, Y. Murayama, T. Tsuda, and T.
Nakamura [2004], gFoil chaff ejection systems for rocket-borne measurement of
neutral winds in the mesosphere and lower thermosphere,h Rev. Sci. Inst., vol.75, pp.2346-2350.
Kubo K., T. Sugiyama, and S. Fukao
[2002], gEvaluation of mesospheric VHF echoes observed with the middle and
upper atmosphere radar,h Radio Sci., vol.37, no.1,
1002, doi:10.1029/2000RS002556.
Kubota M., S. Oyama,
M. Ishii, and Y. Murayama [2002], gRecent results and
future plans of atmospheric study using CRL all-sky imagers,h J. Comm. Res.
Lab., vol.49, pp.161-172.
Kubota, M., T.
Nagatsuma, and
Y. Murayama [2003], gEvening co-rotating
patches: A new type aurora observed by high sensitivity all-sky cameras in
Kutiev,
Lieberman, R. S., D. M. Riggin,
S. J. Franke, A. H. Manson, C. Meek, T. Nakamura, T. Tsuda, R. A. Vincent, and I. Reid [2003], gThe 6.5-day wave
in the mesosphere and lower thermosphere: Evidence for baroclinic/barotropic
instability,h J. Geophys. Res., vol.108, no.D20, 4640,
doi:10.1029/2002JD003349.
Lummerzheim D.,
M. Galand, and M. Kubota [2003], gOptical Emissions from Proton
Ma, G. and T. Maruyama [2003], gDerivation
of TEC and estimation of instrumental biases from GEONET in
Ma, X. F., T. Maruyama, G. Ma, and T. Takeda
[2005a], gDetermination of GPS receiver differential biases by neural network
parameter estimation method,h Radio Sci., vol.40, doi:10.1029/2004RS003072.
Ma, X. F. T. Maruyama, G. Ma, and T.
Takeda [2005b], gThree-dimensional ionospheric tomography using observation
data of GPS ground receivers and ionosonde by neural
network,h J. Geophys. Res., vol.110,
doi:10.1029/2004JA010797.
Maeda, S.,
Maruyama, T. [2002], gRetrieval of in situ
electron density in the topside ionosphere from cosmic radio noise intensity by
an artificial neural network,h Radio Sci., vol.37,
no.5, 1077, doi:10.1029/2001RS002509.
Maruyama T., K. Nozaki, M. Yamamoto, and S. Fukao [2002], gIonospheric height changes at two closely
separated equatorial stations and implications in spread F onsets,h J. Atmos. Sol.-Terr. Phys., vol.64, pp.1557-1563.
Maruyama T. H. Kato, and M. Nakamura
[2003], gIonospheric effects of the Leonid meteor shower in November 2001 as
observed by rapid run ionosondes,h J. Geophys. Res., vol.108, no.A8, 1324, doi:10.1029/2003JA009831.
Maruyama. T., G. Ma, and M. Nakamura [2004], gSignature of TEC storm on
Miyoshi, Y. and H. Fujiwara [2003], gDay-to-day
variations of migrating diurnal tide simulated by a GCM from the ground surface
to the exobase,h Geophys.
Res. Lett., vol.30, no.15, 1789, doi:10.1029/2003GL017695.
Mori H., Y. Murayama,
M. Ishii, M. Yamamoto, and Hans C. Stenbaek-Nielsen
[2002], gImaging riomater database developed in cooperation
with the
Mori H., M. Ishii, Y. Murayama,
M. Kubota, K. Sakanoi, M. Yamamoto, Y. Monzen, D. Lummerzheim, and B. J.
Watkins [2004], gEnergy distribution of precipitating electrons estimated from
optical and cosmic noise absorption measurements,h Ann. Geophys.,
vol.22, pp.1613-1622.
Motoba
T., T. Kikuchi, T. Okusawa, and K. Yumoto [2003], gDynamical
response of the magnetosphere - ionosphere system to a solar wind dynamic
pressure oscillation,h J. Geophys. Res., vol.108, no.A5, 1206. doi:10.1029/2002
JA009696.
Murayama Y., H. Mori,
M. Ishii, M. Kubota, S. Oyama, M. Yamamoto, K. Seki,
K. Mizutani, S. Ochiai, T.
Kikuchi, K. Nozaki, K. Igarashi, H. Masuko, T. Itabe, R. W. Smith, M. Conde, B.
J. Watkins, R. L. Collins, H. C. Stenbaek-Nielsen, W.
R. Simpson, V. Bedford, J. Harrison, F. Williams, and S. -I. Akasofu [2002], gCRL Alaska Project - international collaborations
for observing arctic atmosphere environment in Alaska -,h J. Comm. Res. Lab., vol.49,
no.2, pp.143-152.
Nakamura, T.,
Nakamura, T., T. Aono,
T. Tsuda, A. G. Admiranto,
E. Achmad, and Suranto
[2003], gMesospheric gravity waves over a tropical convective region observed
by OH airglow imaging in Indonesia,h Geophys. Res. Lett., vol.30, no.17, 1882.
Nakazawa, Y., T. Okada,
and K. Shiokawa [2004], gUnderstanding the
"SEKKI" phenomena in Japanese historical literatures based on the
modern science of low-latitude aurora,h Earth Planets Space, vol.56, pp.e41-e44.
Nishitani, N., V. Papitashvili, T. Ogawa, N. Sato, H. Yamagishi,
A.S. Yukimatu, and F. J. Rich [2003], gInterhemispheric asymmetry of the high latitude ionospheric
convection on May 11-12, 1999,h J. Geophys. Res., vol.108,
no.A5, 1184, doi:10.1029/2002JA009680.
Nishitani, N., M.
Lester, S. E. Milan, T. Ogawa, N. Sato, H. Yamagishi,
A. S. Yukimatu, and F. J. Rich [2004], gUnusual
ionospheric echoes with high velocity and very low spectral width observed by
the SuperDARN radars in the polar cap during high
geomagnetic activity,h J. Geophys. Res., vol.109, no.A2,
A02311, doi:10.1029/2003JA010048.
Nozawa, S., A. Brekke, A. Manson, C. M. Hall, C. Meek, K. Morise, S. Oyama, K. Dobashi, and R. Fujii [2002], gA comparison study of the auroral lower thermospheric
neutral winds derived by the EISCAT UHF radar and the Tromso
radar,h J. Geophys.
Res., vol.107, doi:10.1029/2000JA007581.
Nozawa, S., S. Imaida, A. Brekke, C. Hall, C.
Meek, A. Manson, S. Oyama,
K. Dobashi, and R. Fujii [2003a],
gThe quasi 2-day wave observed in the polar mesosphere,h J. Geophys. Res.,
vol.108, no.D2, 4039, doi:10.1029/2002JD002440.
Nozawa, S., H. Iwahashi, A. Brekke, C. M. Hall,
C. Meek, A. Manson, S. Oyama, Y. Murayama,
and R. Fujii [2003b], gThe quasi 2-day wave observed
in the polar mesosphere: Comparison of the characteristics observed at Tromso and Poker Flat,h J. Geophys.
Res., vol.108, no.D24, 4748,
doi:10.1029/2002JD003221.
Ogawa, T., N. Balan,
Y. Otsuka, K. Shiokawa, C.
Ihara, T. Shimomai, and A. Saito [2002a], gObservations
and modeling of 630 nm airglow and total electron content associated with
traveling ionospheric disturbances over Shigaraki,
Japan,h Earth Planets Space, vol.54, pp.45-56.
Ogawa, T., N. Nishitani,
N. Sato, H. Yamagishi, and A. S. Yukimatu
[2002b], gUpper mesosphere summer echoes detected with the Antarctic Syowa HF
radar,h Geophys. Res. Lett.,
vol.29, no.7, doi:10.1029/2001GL014094.
Ogawa, T., N. Nishitani,
N. Sato, H. Yamagishi, and A. S. Yukimatu
[2002c], gE region echoes observed with the Syowa HF radar under disturbed
geomagnetic conditions,h Adv. Polar Upper Atmos.
Res., vol.16, pp.84-98.
Ogawa, T., O. Takahashi, Y. Otsuka,
K. Nozaki, M. Yamamoto, and K. Kita [2002d], gSimultaneous middle and upper
atmosphere radar and ionospheric sounder observations of midlatitude
E region irregularities and sporadic E layer,h J. Geophys.
Res., vol.107, no.A10, 1275, doi:10.1029/2001JA900176.
Ogawa, T., N. F. Arnold, S. Kirkwood, N. Nishitani, and M. Lester [2003a], gFinland HF and Esrange MST radar observations of polar mesosphere summer
echoes,h Ann. Geophys., vol.21, pp.1047-1055.
Ogawa, T., K. Hosokawa, N. Nishitani,
N. Sato, H. Yamagishi, and A. S. Yukimatu
[2003b], gCharacteristics of polar mesosphere summer echoes observed with oblique
incidence HF radars at Syowa Station,h Adv. Polar Upper Atmos.
Res., vol.17, pp.13-29.
Ogawa, T., S. Nozawa,
M. Tsutsumi, N. F. Arnold, N. Nishitani,
N. Sato, and A. S. Yukimatu [2004], gArctic and
Antarctic polar mesosphere summer echoes observed with oblique incidence HF
radars: Analysis using simultaneous MF and VHF radar data,h Ann. Geophys., vol.22, pp.4049-4059.
Ogawa, T., E. Sagawa, Y. Otsuka,
K. Shiokawa, T. J. Immel,
S. B. Mende, and P. Wilkinson [2005], gSimultaneous
ground- and satellite-based airglow observations of geomagnetic conjugate
plasma bubbles in the equatorial anomaly,h Earth Planets Space, vol.57, no.5, pp.385-392.
Otsuka
Y, T. Ogawa, A. Saito, T. Tsugawa,
Otsuka,
Y., K. Shiokawa, T. Ogawa, and P. Wilkinson [2002b], gGeomagnetic
conjugate observations of equatorial airglow depletions,h Geophys.
Res. Lett., vol.29, doi:10.1029/2002GL015347.
Otsuka,
Y., T. Kadota, K. Shiokawa,
T. Ogawa, S. Kawamura, S. Fukao, and S.-R. Zhang [2003], gOptical and radio measurements of a 630-nm airglow
enhancement propagating over
Otsuka, Y., K. Shiokawa, T. Ogawa, and P. Wilkinson [2004a], gGeomagnetic
conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers,h Geophys. Res. Lett., vol.31, L15803,
doi:10.1029/2004GL020262.
Otsuka, Y., K. Shiokawa, T. Ogawa, T. Yokoyama, M. Yamamoto, and S. Fukao [2004b], gSpatial relationship of equatorial plasma
bubbles and field-aligned irregularities observed with an all-sky airglow
imager and the Equatorial Atmosphere Radar,h Geophys.
Res. Lett., vol.31, L20802, doi:10.1029/2004GL020869.
Oyama, S., M. Ishii,
Y. Murayama, H. Shinagawa, S. Nozawa,
S. C. Buchert, R. Fujii,
and W. Kofman [2001a], gGeneration of atmospheric
gravity waves associated with auroral activity in the
polar F-region,h J. Geophys. Res., vol.106, no.A9,
pp.18,543-18,554.
Oyama, S., M. Ishii,
Y. Murayama, H. Shinagawa, S. Nozawa,
S. C. Buchert, R. Fujii,
and W. Kofman [2001b], gEffects of auroral arcs on the generation of gravity waves in the auroral region,h Adv. Space Res., vol.27, pp.1767-1772.
Oyama S., Y. Murayama, M. Ishii, and M. Kubota [2002], gDevelopment of
SALMON system and the environmental data transfer experiment,h J. Comm. Res.
Lab., vol.49, pp.253-258.
Oyama, S.,
Oyama,
S., C. Lathuillere, S. Maeda, and B. J. Watkins
[2004], gSummer-winter dependences of day-night differences in the ion
temperature in the polar upper F region,h Geophys.
Res. Lett., vol.31, doi:10.1029/2003GL018820.
Oyama,
S., B. J. Watkins, S. Nozawa, S. Maeda, and M. Conce [2005], gVertical ion motion observed with incoherent
scatter radars in the polar lower ionosphere,h J. Geophys.
Res., vol.110, A04302, doi:10.1029/2004JA010705.
Pavelyev, A., T. Tsuda, K. Igarashi, Y. A. Liou,
and K. Hocke [2003], gWave structures in the electron
density profile in the ionospheric D- and E-layers observed by radio holography
analysis of the GPS/MET radio occultation data,h J. Atmos.
Sol.-Terr. Phys., vol.65, no.1, pp.59-70.
Pavlov A., V.,
Pavlov A., S. Fukao,
S. Kawamura, B. F. Fejer, and L. Scherliess
[2004b], gF region ionospheric perturbations in the low-latitude during the
geomagnetic storm of 25-27 August 1987,h Ann.
Geophys. vol.22, pp.3479-3501.
Ping, J, Y. Kono, K.
Matsumoto, Y. Otsuka, A. Saito, C. Shum, K. Heki, and N. Kawano [2002], gRegional ionosphere map over
Japanese Islands,h Earth Planets Space, vol.54, no.12, pp.E13-E16.
Portnyagin, Yu., T. Solovjova, E. Merzlyakov, J.
Forbes, S. Palo, D. Ortland, W. Hocking, J.
MacDougall, T. Thayaparan, A. Manson, C. Meek, P.
Hoffmann, W. Singer, N. Mitchell, D. Pancheva, K.
Igarashi, Y. Murayama, Ch. Jacobi,
D. Kuerschner, A. Fahrutdinova,
D. Korotyshkin, R. Clark, M. Taylor, S. Franke, D. Fritts, T. Tsuda, T. Nakamura, S. Gurubaran,
R. Rajaram, R. Vincent, S. Kovalam,
P. Batista, G. Poole, S. Malinga, G. Fraser, D. Murphy,
D. Riggin, T. Aso, and M. Tsutsumi [2004], gMesosphere/lower thermosphere prevailing
wind model,h Adv. Space Res., vol.34, pp.1755-1762.
Sahai, Y., K. Shiokawa, Y. Otsuka, C. Ihara, T.
Ogawa, K. Igarashi,
Saito, A., M. Nishimura, M. Yamamoto, S. Fukao, T. Tsugawa, Y. Otsuka, S. Miyazaki, and M. C. Kelley [2002], gObservations
of traveling ionospheric disturbances and 3-m scale irregularities in the
nighttime F-region ionosphere with the MU radar and a GPS network,h Earth
Planets Space, vol.54, no.1, pp.31-44.
Sakanoi K.and H. Hukunishi
[2004], gTemporal and spatial structures of flickering aurora derived from
high-speed imaging photometer observations at Syowa Station in the Antarctic,h
J. Geophy. Res., vol.109, no.A1, A01221, doi:10.1029/2003JA010081.
Shinagawa, H.,
Shinagawa, H. [2004], gThe ionospheres of
Venus and Mars,h Adv. Space Res., vol.33, no.11, pp.1924-1931.
Shiokawa, K., Y. Otsuka, M. K. Ejiri, Y. Sahai, T. Kadota, C. Ihara, T.
Ogawa, K. Igarashi, S. Miyazaki, and A. Saito [2002a], gImaging observations of
the equatorward limit of midlatitude traveling
ionospheric disturbances,h Earth Planets Space, vol.54, pp.57-62.
Shiokawa, K., Y. Otsuka, T. Ogawa, N. Balan, K.
Igarashi, A. J. Ridley, D. J. Knipp, A. Saito, and K.
Yumoto [2002b], gA large-scale traveling ionospheric
disturbance during the magnetic storm of September 15, 1999,h J. Geophys. Res., vol.107, doi:10.1029/2001JA000245.
Shiokawa,
K., C. Ihara, Y. Otsuka, and T. Ogawa [2003a], gStatistical
study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images,h J. Geophys. Res.,
vol.108, doi:10.1029/2002JA009491.
Shiokawa,
K., Y. Otsuka, C. Ihara, T. Ogawa, and F. J. Rich
[2003b], gGround and satellite observations of nighttime medium-scale traveling
ionospheric disturbance at midlatitude,h J. Geophys. Res., vol.108, doi:10.1029/2002JA009639.
Shiokawa, K., T. Kadota, Y. Otsuka, T. Ogawa, T.
Nakamura, and
Shiokawa, K., Y. Otsuka, T. Ogawa, S. Kawamura, M. Yamamoto, S. Fukao, T. Nakamura, T. Tsuda, N. Balan, K. Igarashi, G. Lu, A. Saito, and K. Yumoto [2003d], gThermospheric wind during a storm-time
large-scale traveling ionospheric disturbance,h J. Geophys.
Res., vol.108, doi:10.1029/2003JA010001.
Shiokawa, K., Y. Otsuka, T. Ogawa, and P. Wilkinson [2004], gTime evolution
of high-altitude plasma bubbles imaged at geomagnetic conjugate points,h Ann. Geophys., vol.22, pp.3137-3143.
Shiokawa, K., T. Ogawa,
and Y. Kamide [2005a], gLow-latitude auroras observed
in
Shiokawa, K., Y. Otsuka, T. Tsugawa, T. Ogawa, A.
Saito, K. Ohshima, M. Kubota, T. Maruyama, T. Nakamura, M. Yamamoto, and P.
Wilkinson [2005b], gGeomagnetic conjugate observation of nighttime medium-scale
and large-scale traveling ionospheric disturbances: FRONT3 campaign,h J. Geophys. Res., vol.110, doi:10.1029/2004JA010845.
Stening,
R. J., T. Tsuda, and T. Nakamura [2003], gLunar tidal
winds in the upper atmosphere over
Takeda, M. [2002a], gThe correlation
between the variation in ionospheric conductivity and that of the geomagnetic
Sq field,h J. Atmos. Sol.-Terr.
Phys., vol.64, no.10, pp.1617-1621.
Takeda, M. [2002b], gFeatures of Global
Geomagnetic Sq field from 1980 to 1990,h J. Geophys.
Res., vol.107, no.A9, 1252, doi:10.1029/2001JA009210.
Takeda, M., T. Iyemori,
and A. Saito [2003], gRelationship between electric field and currents in the
ionosphere and the geomagnetic Sq field,h J. Geophys.
Res., vo.108, no.A5, 1183, doi:10.1029/2002JA009659.
Terada, N.,
Terada, N., H. Shinagawa, and
Tsuda, T., S.
Yoshida, F. Isoda, T. Nakamura, A. Nuryanto, S. Manurung, O. Sobari, R. A. Vincent, and I. M. Reid [2002], gLong-term
variations of atmospheric wave activity in the mesosphere and lower
thermosphere region over the equatorial Pacific,h J. Atmos.
Sol.-Terr. Phys., vol.64, pp.1123-1129.
Tsugawa,
T., A. Saito, Y. Otsuka, and M. Yamamoto [2003], gDamping
of large-scale traveling ionospheric disturbances detected with GPS networks during
the geomagnetic storm,h J. Geophys.
Res., vol.108, no.A3, 1127, doi:10.1029/2002JA009433.
Tsugawa,
T., A. Saito, and Y. Otsuka [2004], gA statistical
study of large-scale traveling ionospheric disturbances using the GPS network
in
Tsurutani, B., A. Mannucci, B. Iijima, M. A. Abdu, J. H. A. Sobral, W.
Gonzalez, F. Guarnieri, T. Tsuda,
A. Saito, K. Yumoto, B. Fejer,
T. J. Fuller-Rowell, J. Kozyra, J. C. Foster, A. Coster, V. and M. Vasyliunas
[2004], gGlobal dayside ionospheric uplift and enhancement associated with
interplanetary electric fields,h J. Geophys. Res., vol.109,
A08302, doi:10.1029/2003JA010342.
Yamamoto, M., M. Kubota, S. Takeshita,
M. Ishii, Y. Murayama, and M. Ejiri
[2002], gCalibration of CRL all-sky imagers using an integrating sphere,h Adv.
Polar Upper Atmos. Res., vol.16, pp.173-180.
Yokoyama, T., M. Yamamoto, and
Yokoyama, T., M. Yamamoto,
Yokoyama, T., S. Fukao,
and M. Yamamoto [2004b], gRelationship of the onset of equatorial F region
irregularities with the sunset terminator observed with the Equatorial Atmosphere
Radar,h Geophys. Res. Lett., vol.31, no.24, L24804, doi:10.1029/2004GL021529.
Yokoyama, T., T. Horinouchi,
M. Yamamoto, and S. Fukao [2004c], gModulation of the
midlatitude ionospheric E region by atmospheric
gravity waves through polarization electric field,h J. Geophys.
Res., vol.109, A12307, doi:10.1029/2004JA010508.
Zhang, B.-C., Y. Kamide,
R.-Y. Liu, H. Shinagawa, and K. Iwamasa [2004], gA modeling study of ionospheric
conductivities in the high-latitude electrojet
regions,h J. Geophys. Res., vol.109, A04310,
doi:10.1029/2003JA010301.
Zhang, S.-R., W. L. Oliver, J. M. Holt, and S. Fukao [2002], gSolar EUV flux, exospheric temperature and thermospheric
wind inferred from incoherent scatter measurements of electron density profile
at Millstone and Shigaraki,h Geophys.
Res. Lett., vol.29, no.9, 1358, doi:10.1029/2001GL013579.
Zhang, S. R., W. L. Oliver, J. M. Holt, and S. Fukao [2003], gIonospheric data assimilation: Comparison of
extracted parameters using full density profiles and key parameters,h J. Geophys. Res., vol.108, no.A3, 1131, doi:10.1029/2002JA009521.
(compiled by T.
Maruyama and M. Yamamoto)