Analysis and Design of a Current-Mode PWM Buck Converter
Adopting the Output-Voltage Independent Second-Order Slope Compensation Scheme

Hiroki SAKURAI†, Student Member and Yasuhiro SUGIMOTO††, Member

SUMMARY In this paper, we propose the use of second-order slope compensation for a current-mode PWM buck converter. First, the current feedback loop in a current-mode PWM buck converter using a conventional slope compensation is analyzed by the small-signal transfer function. It becomes clear that the stability and frequency bandwidth of the current feedback loop is affected by the external input voltage and the output voltage of the converter. Next, the loop with second-order slope compensation is analyzed, and the result shows that the loop becomes unconditionally stable with the adoption of second-order slope compensation with appropriate parameter values and a current sensing circuit whose current is sensed across an impedance that is inversely proportional to the input voltage. In order to verify our theory, we designed whole circuits of a current-mode PWM buck converter including the new inductor current sensing circuit and the second-order voltage generator circuit using device parameters from the 0.6 μm CMOS process. The circuit simulation results under the conditions of 4 MHz switching frequency, 3.6 V input voltage and 2.4 V output voltage are presented.

key words: PWM buck converter, current-mode control, slope compensation

1. Introduction

Today, various mobile equipment has become available due to the expansion of the applications in the wireless communication field. The use of step-down DC-DC converters is necessary in this equipment to convert the battery voltage to the LSI’s supply voltage. Of course, power efficient converters are needed in order to extend battery lifetimes.

There are two control methods for the PWM DC-DC converter, the voltage-mode and current-mode. The voltage-mode control has the disadvantage of a small frequency bandwidth. The external inductor and capacitor at the output, which form a low-pass filter, introduce a phase shift at the self-resonant frequency; that is, \(f_{LC} = \frac{1}{2\pi \sqrt{LC}} \). This requires a gain of the control loop to be less than unity at \(f_{LC} \) to guarantee stability. The result is a slow response in output voltage or current change [1].

On the other hand, the current-mode control can realize a large frequency bandwidth. Two loops are needed in this configuration: the conventional voltage control loop and the current control loop. Though circuits become complicated, it is possible to extend the frequency bandwidth up to half of the switching frequency [2]–[5]. In order to guarantee the stability of the system, the slope compensation is usually introduced. The amount of slope compensation is important because it affects both on stability and the frequency bandwidth. But the optimum value of slope compensation varies depending on external input voltage and the output voltage of the DC-DC converter.

This paper proposes the use of second order slope compensation to make the slope value independent of the external input voltage and the output voltage of the converter. In Sect. 2, a block diagram of the designed current-mode PWM buck DC-DC converter is shown. Section 3 analyzes the current feedback loop of the conventional converter by adopting the small-signal transfer function, and describes the relationship between the slope value and the stability. Section 4 analyzes the effectiveness of the second order slope compensation in terms of the stability and frequency bandwidth. The newly designed circuits to form the proposed PWM buck DC-DC converter appear in Sect. 5. Section 6 compares the hand calculation result and the SPICE simulation result of the circuits. Section 7 concludes this study.

2. Block Diagram of the Designed Current-Mode PWM Buck DC-DC Converter

Figure 1 shows a block diagram of the designed PWM buck DC-DC converter with current-mode control. It consists of an error amplifier, a PWM comparator, an SR-FF, a reference voltage generator, a current sensing circuit, a control circuit, a slope compensation circuit, and power MOS transistors \(M_p \) and \(M_n \). The inductor \(L \), capacitor \(C \), load resistor \(R_L \) and feedback resistors \(R_{f1} \) and \(R_{f2} \) are all external. The converter has two control loops, a voltage control loop and a current control loop. The current sensing circuit detects the inductor current, then converts it into voltage. This voltage, after including the slope compensation voltage, is applied to a comparator and is compared with the one from the error amplifier in the voltage control loop.

At the beginning of the clock period, a set pulse is applied to the S terminal of SR-FF and this forces \(Q \) output high. The output of the control circuit then becomes low,

To analyze the current feedback loop of the PWM converter, a small signal transfer function of the current feedback loop is established. Figure 2 shows waveforms of V_c and V_i when the conventional slope compensation signal is applied. Figure 3 shows the block diagram of the current feedback loop. In Fig. 2, Z_{cf} stands for the current-to-voltage conversion trans-impedance gain of the current sensing circuit; m_c is the voltage slope of the slope compensation signal; T_s is one clock period; D is the duty which is the ratio between the interval of M_p being on and T_s; and Δd is the change in duty. m_1 is the slope of the inductor current change and it becomes

$$m_1 = \frac{V_{in} - V_{out}}{L}$$

Suppose that V_c changes by ΔV_c as shown in Fig. 2. Then, the on-time duration of V_i changes by $\Delta d \times T_s$ and is calculated as,

$$\Delta d T_s = \frac{\Delta V_c}{m_1 Z_{cf} + m_c}$$

This gives the small-signal transfer function T_{cm} between the control signal V_c and the duty D as shown in Fig. 3:

$$T_{cm} = \frac{\Delta d}{\Delta V_c} = \frac{f_s}{m_1 Z_{cf} + m_c}$$

where $f_s = 1/T_s$. In Fig. 3, T_{ps} shows the small-signal transfer function between the duty and the inductor current, described as a PWM power-stage model in reference 1 and reference 6. Using that model, T_{ps} becomes

$$T_{ps} = \frac{\Delta i_L}{\Delta d} = \frac{V_{in}}{Z_{LCR}}$$

$H_c(s)$ is the sampled-data transfer function which is appeared in reference 3. In the PWM converter with voltage-mode control, the frequency bandwidth of the control loop becomes far smaller than the switching frequency; therefore, $H_c(s)$ is approximated to 1. On the other hand, the frequency bandwidth of the current-mode control loop is large, and $H_c(s)$ should be considered as it is. According to reference 3,

$$H_c(s) \approx \frac{1}{sT_s + \frac{s^2}{\omega_n^2} + \frac{1}{\omega_m^2}}$$

For the purpose of simplicity, the second-order approximation is usually used.

$$H_c(s) \approx 1 + \frac{s}{\omega_n Q_c} + \frac{s^2}{\omega_n^2}$$

where $\omega_n = \pi f_s$ and $Q_c = -2/\pi$ in reference 3, or $\omega_n = \sqrt{3} f_s$ and $Q_c = -1/\sqrt{3}$ in reference 4. This approximation is valid up to half of the switching frequency. Eq. (6) has a
second-order pole at \(f = f_s/2 \) when we adopt \(\omega_n \) and \(Q \) in reference 3.

It is well known that the current feedback loop without slope compensation becomes unstable when the duty becomes larger than 50%. Therefore, the slope compensation must be included. However, the stability and the frequency bandwidth of the current feedback loop largely depend on the value of slope compensation.

The closed-loop transfer function of the current feedback loop in Fig. 3 becomes

\[
T_{cl} = \frac{\Delta I_L}{\Delta V_c} = \frac{T_{cm} \cdot T_{ps}}{1 + Z_{cf} \cdot H_p(s) \cdot T_{cm} \cdot T_{ps}} \quad (7)
\]

Here, we assume for simplicity that the voltage across the inductor is kept constant; therefore, the approximation \(Z_{LCR} \approx sL \) holds. Then, substituting equations (3), (4) and (6) into equation (7) yields

\[
T_{cl} = \frac{1}{Z_{cf}} \cdot \frac{1}{1 + \frac{2s}{\omega_n} \zeta + \frac{s^2}{\omega_n^2}} \quad (8)
\]

where the damping factor \(\zeta \) is

\[
\zeta = \frac{\pi L}{2V_{in}Z_{cf}} \left(m_z Z_{cf} + m_c \right) - \frac{\pi}{4}
\]

\[
\zeta = \frac{\pi}{2} \left(\frac{1}{2} + \frac{L}{V_{in}Z_{cf}} m_c - \frac{V_{out}}{V_{in}} \right) \quad (9)
\]

In general, \(V_{out}/V_{in} \) is interpreted as duty \(D \).

The stability is deeply related to the \(\zeta \) value in equation (9). The current feedback loop becomes unstable when \(\zeta \) becomes negative due to the fact that pole positions of equation (8) fall in the right half plane. Therefore, the necessary condition to stabilize this feedback loop is that \(\zeta \) must be positive. Figure 4 shows the frequency characteristics of equation (8). When \(\zeta \) becomes close to zero, a significant peak arises in gain characteristic at half of the switching frequency, where the switching frequency \(f_s \) is 4 MHz. This is because of the second-order pole appearing in equation (8). This undesirable instability is called a sub-harmonic oscillation. In order to suppress this peak, it is necessary to make the value of the second term in the denominator of equation (8) less than unity at the frequency that is half of the switching frequency. This yields \(\zeta > 1/2 \). Moreover, when \(\zeta \) becomes larger than one-half, the frequency bandwidth of the current feedback loop decreases. When \(\zeta = 5 \), the –3 dB frequency becomes approximately one-tenth as seen in Fig. 4.

From equation (9), the \(m_c \) that satisfies the relation \(\zeta > 1/2 \) is calculated as:

\[
m_c = \frac{Z_{cf} V_{outm}}{L} \left\{ \frac{1}{\pi} - \frac{1}{2} \right\} \quad (10)
\]

The required \(m_c \) depends both on \(V_{in} \) and \(V_{out} \). The influence of \(V_{out} \) is about five times larger than that of \(V_{in} \). We need to set \(m_c \) at the maximum in order to satisfy equation (10) all the time whenever \(V_{out} \) changes. The worst-case condition is given when \(D = 1 \) and \(V_{out} \) are the specified maximum value, that is, \(V_{out} = V_{outm} \).

\[
m_c = \frac{Z_{cf} V_{outm}}{L} \left\{ \frac{1}{\pi} + \frac{1}{2} \right\} \quad (11)
\]

Substituting equation (11) into equation (9) gives a \(\zeta \) value. Note that \(V_{outm} \) is the fixed maximum value that is decided by considering the possible output voltage range of the converter. \(V_{out} \) of less than \(V_{outm} \) is usually taken. Assume that \(V_{out} = \frac{1}{3}V_{outm} \). The calculation indicates that \(\zeta \) changes from 3.2 to 5.6 according as duty \(D \) changes from 0.5 to 1. The change of the \(\zeta \) value caused by duty \(D \) change results in the change in the frequency bandwidth as can be seen in Fig. 4. Moreover, it might happen that the \(\zeta \) value becomes more than 5.

4. Stability with the Second-Order Slope Compensation

In order to avoid the stability dependence on the output voltage \(V_{out} \), we propose using a second-order slope compensation scheme.

Figure 5 shows the \(V_c \) and \(V_i \) for the PWM comparator when the second-order slope compensation is used. In steady state,

\[
V_c = m_z Z_{cf} DT_s + m'_c (DT_s)^2 + V_{base} \quad (12)
\]

where \(m' \) is the coefficient of the second-order slope compensation voltage, and \(V_{base} \) is the voltage of \(V_i \) at time zero.
When V_c increases by Δv_c, we obtain

$$V_c + \Delta v_c = m_1 Z_{cf} (D + \Delta d) T_s + m'_c (D + \Delta d)^2 T_s^2 + V_{base} \tag{13}$$

Assuming that Δd is sufficiently small compared with D, equation (13) becomes

$$V_c + \Delta v_c = m_1 Z_{cf} (D + \Delta d) T_s + m'_c (D T_s)^2 \left(1 + \frac{\Delta d}{D} \right) + V_{base} \tag{14}$$

The small-signal transfer function T_{cm2} between D and V_c when the second-order slope compensation is used becomes

$$T_{cm2} = \frac{\Delta d}{\Delta v_c} = \frac{f_s}{m_1 Z_{cf} + 2 D T_s m'_c} \tag{15}$$

Substituting equation (15) into equation (7), the small-signal transfer function of the whole current feedback loop T_{c2} becomes

$$T_{c2} = \frac{1}{Z_{cf}} \cdot \frac{1}{1 + \frac{1}{\omega_0} \zeta + \frac{1}{\omega_0^2}} \tag{16}$$

where the damping factor ζ changes to

$$\zeta = \frac{\pi L}{2 V_m Z_{cf}} \left(m_1 Z_{cf} + 2 D T_s m'_c \right) - \frac{\pi}{4} \tag{17}$$

As previously mentioned, ζ must be more than one half in order to avoid a peak in loop gain at half the switching frequency. This yields m'_c as

$$m'_c > \frac{V_m Z_{cf} f_s}{2 L} \left(1 + \left(\frac{1}{\pi} - \frac{1}{2} \right) \frac{1}{D} \right) \tag{18}$$

Equation (18), however, is the one that is only valid when the control loop is close under the steady-state condition. In order to guarantee stability, it is necessary to consider the case when a large amount of disturbance is introduced; the voltage slope of V_i for a large disturbance is different from that of a small disturbance because the slope is a second-order function.

Figure 6 shows the slope values needed to perform the effective compensation when a large amount of disturbance is introduced. They are shown in the figure with dashed lines connected between the start-point and the end-point of disturbance. We denote the effective slope value of the slope compensation as $m_{c(\text{eff})}$. When V_i increases (or I_L decreases), $m_{c(\text{eff})}$ becomes larger than $2 DT_s m'_c$, which is the value close under the steady-state condition. On the other hand, when V_i decreases (or I_L increases), $m_{c(\text{eff})}$ becomes smaller. The minimum value of $m_{c(\text{eff})}$, which occurs when DT_S equals $\Delta d T_c$, is given by

$$m_{c(\text{eff}) \text{min}} = \frac{m'_c (D T_s)^2}{D T_S} \tag{19}$$

This means that we need to redefine ζ in equation (17) to be

$$\zeta = \frac{\pi L}{2 V_m Z_{cf}} \left(m_1 Z_{cf} + 2 D T_s m'_c \right) - \frac{\pi}{4} \tag{20}$$

in order to find the effective m'_c under this large disturbance condition. Note that ζ in equation (17) always becomes larger than that of equation (20). Even when a large disturbance occurs, the system should be stable, though the occurrence is rare. We would like to guarantee this stability by assigning m'_c a value which makes the ζ value in equation (20) positive. This leads to

$$m'_c > \frac{V_m Z_{cf} f_s}{2 L} \left(1 - \frac{1}{2 D} \right) \tag{21}$$

Therefore, we choose the m'_c value by using $D = 1$ to be

$$m'_c = \frac{V_m Z_{cf} f_s}{2 L} \tag{22}$$

Equation (22) does not contain the output voltage. Substituting equation (22) into equation (17) gives ζ value close under that of the steady-state condition.

![Figure 5](image1.png)
Fig. 5 Waveforms of V_c and V_i in a current control loop (second-order slope compensation).

![Figure 6](image2.png)
Fig. 6 The slope necessary to perform the effective slope compensation for a large disturbance.
\[
\zeta = \frac{\pi L}{2V_{in} Z_{c,f}} \left(\frac{V_{in} - V_{out}}{L} Z_{c,f} + \frac{V_{in} Z_{c,f} D}{L} \right) - \frac{\pi}{4}
\]
\[
= \frac{\pi}{2} - \frac{\pi}{4} = 0.8
\]

(23)

The result indicates that the \(\zeta \) value, in other words, the frequency bandwidth of the loop under a small disturbance condition close to the steady state, does not change all the time. We come to set the \(m' \) value which realizes the constant \(\zeta \) value for a small disturbance, yet guarantees stability in a large-disturbance condition.

5. A Method for Sensing Inductor Current and Slope Compensation

Using the second-order compensation enables the \(m' \) value to be independent of the output voltage, and realizes a constant frequency bandwidth for the control loop. As can be seen in equation (22), however, \(m' \) still depends on the input voltage \(V_{in} \). The ultimate goal for \(m' \) is for it to depend on neither \(V_{in} \) nor \(V_{out} \). The independence from \(V_{in} \) is realized by configuring the circuit as described below.

Figure 7 shows a circuit that senses the inductor current and produces the second-order slope compensation signal. In order to detect the inductor current, the voltage difference between a drain and a source terminal of power PMOS transistor (\(M_P \)) is used. The advantage of this sensing method is that it does not require a resistor in series with the PMOS transistor. The power consumption, therefore, is minimized. When \(M_P \) turns on, it is in a linear region and the equivalent resistor value across the drain and the source terminals becomes

\[
R_{on,P} = \frac{1}{\beta_P (V_{in} - V_{th,P})}
\]

(24)

where \(\beta_P \) and \(V_{th,P} \) are the transconductance parameter and the threshold voltage of \(M_P \), respectively.

Substituting equation (24) for \(Z_{c,f} \) in equation (22), we obtain

\[
m' = \frac{f}{2L\beta_P} \cdot \frac{V_{in}}{V_{in} - V_{th,P}}
\]

(25)

If \(V_{in} > V_{th,P} \), then the \(V_{in} \) dependence in equation (25) is eliminated.

When \(M_P \) turns on, \(SW_1 \) turns on and \(SW_2 \) turns off, as shown in Fig. 7. The inductor current \(I_L \), which flows through \(M_P \), produces the voltage at terminal \(N_{LX} \), and this voltage is applied to the source of \(M_{c,1} \). \(M_{c,1} \) is biased by the constant current \(I_{b2} \). So the voltage at \(N_{LX} \) is mirrored to the voltage across the resistor \(R_{c,1} \). The voltage across the resistor \(R_{c,2} \) then becomes \(R_{c,2}/R_{c,1} \) times the voltage at \(N_{LX} \) in inverted form when the transconductance of \(M_{c,2} \) is larger than \(1/R_{c,1} \). Consequently, the conversion gain of the current detection circuit \(Z_{c,f} \) is

\[
Z_{c,f} = \frac{R_{c,2}}{R_{c,1}} \cdot \frac{1}{\beta_P (V_{in} - V_{th,P})}
\]

(26)

When \(M_P \) is cut off, \(SW_1 \) turns off and \(SW_2 \) turns on. The source terminal of \(M_{c,1} \) is connected to the power line, and only a small amount of constant current flows through \(M_{c,2} \) in this case. The frequency bandwidth of this circuit is sufficiently higher than the switching frequency in order to sense the complete waveforms of the inductor current. The gain is several-fold. The average current that flows through this circuit is less than ten micro-amperes.

The Slope compensation circuit consists of \(M_{c,3} \) and \(M_{c,4} \), a constant bias current \(I_{b2} \), a capacitance \(C_c \), and a switch \(SW_3, I_{b2} \) is stable, and the slope produced by \(I_{b2} \) and \(C_c \) is relatively precise. When \(M_P \) turns on, \(SW_3 \) turns off. The constant current flows through \(C_c \) and \(M_{c,3} \), and a voltage drop of \(C_c \) increases linearly with time. This linear voltage change is applied to the gate terminal of \(M_{c,4} \). As a result, a current with a square relationship with time flows in \(M_{c,4} \) and is converted to square voltage by the resistor \(R_{c,2} \). The coefficient of the second-order slope compensation \(m' \) approximately becomes

\[
m' = \frac{f}{2L\beta_{c4}} \times \left(\frac{I_{b2}}{C_c} \right)^2
\]

(27)

where \(\beta_{c4} \) is the transconductance parameter of \(M_{c,4} \). All the parameters in equation (27) must be selected to satisfy
When the spike noise ceases, switch noise is transferred to the resistor R_{C2}. After a certain period of time, when the spike noise ceases, SW_2 begins to turn off.

In order to avoid the influence of the spike noise, switch timings for SW_1 and SW_2 have been modified. When MP is cut off, SW_1 is set cut off and SW_2 is set on. Just after MP turns on, SW_2 is kept on while SW_1 becomes turned on. At this moment, the source terminal of M_{c1} connects to the power line, so that no spike noise at terminal NLX is transferred to the resistor R_{C2}. After a certain period of time, when the spike noise ceases, SW_2 begins to turn off.

6. Estimation of the Overall Frequency Characteristics of the PWM Buck DC-DC Converter with Current-Mode Control

The PWM buck DC-DC converter with current-mode control is designed and its control-loop transfer function is analyzed using following parameters from the actual design.

$$ f_s = 4 \text{ MHz} \quad L = 2.2 \mu \text{H} \quad C = 10 \mu \text{F} \quad R_L = 20 \Omega $$

$$ \beta_p = 0.7 \text{ S/V} \quad V_{ihp} = 0.8 \text{ V} \quad R_{c1} = 10 \text{ k}\Omega \quad R_{c2} = 30 \text{ k}\Omega $$

$$ I_{LS} = 3 \mu \text{A} \quad C_c = 4 \text{ pF} \quad \beta_{CS} = 0.7 \text{ mS/V} $$

Figure 8 shows the small-signal equivalent circuit of a whole PWM buck DC-DC converter with current-mode control. For simplicity, we assume that the input voltage and the reference voltage don’t change in time. This means that the voltage feedforward terms that are described in reference 5 are neglected. $Z_{CR}(s)$ is the combined impedance of C and the load resistor R_L. As the output of the converter is in the voltage form, $Z_{CR}(s)$ is needed to convert the inductor current to the output voltage. It is given by

$$ Z_{CR}(s) = \frac{R_L(1 + j\omega R_C C)}{1 + j\omega(R_L + R_C) C} \quad (28) $$

where $R_c(0.3 \Omega)$ is the series resistance of C.

For the first step, we calculated the transfer function between v_i to v_{out} to see whether sub-harmonic oscillation occurs and whether the frequency bandwidth becomes constant even with changes in the input voltage V_{in} applied to the converter and the output voltage V_{out} derived from the converter. Fig. 9 shows the frequency characteristics of the voltage gain and the phase with different values of V_{in} and V_{out}. The transfer function between v_i to v_{out} becomes the product of equation (16) and equation (28). Equation (28) is similar to the transfer function of the lag-lead filter. No sub-harmonic oscillation is seen in Fig. 9. Although the voltage gain changes slightly depending on V_{in}, the phase of the loop does not change at all. This means that curves of the voltage gain in Fig. 9 all have the same frequency bandwidth of $f_s/2$, where f_s is 4 MHz. The voltage gain dependency derives from the Z_{CF} change as seen in equation (26).

Next, the transfer function of the whole control loop shown in Fig. 8 is calculated. Figure 10 shows the frequency characteristics of the loop from v_{out} to v_{out}, which is the open-loop transfer function. In this case, the voltage feedback loop, which is composed of β and $A_{err}(s)$ in Fig. 8, is added to the analysis that is performed in Fig. 9. The circuit of this voltage feedback loop is already shown in Fig. 1. $\beta(0.21)$ is the voltage-dividing ratio by resistors $R_{f1}(380 \text{k}\Omega)$ and $R_{f2}(100 \text{k}\Omega)$. $A_{err}(s)$ is the small signal transfer function of the error amplifier; it is determined by a capacitor $C_e(20 \text{pF})$ and a resistor $R_e(1200 \text{k}\Omega)$ in series between the output terminal and the negative input terminal of the error amplifier. V_{in} and V_{out} are chosen to be 3.6 V and 2.4 V, respectively.

Figure 10 also ensures the stability of the loop in that no sub-harmonic oscillation is seen. As the bandwidth of

For the first step, we calculated the transfer function between v_i to v_{out} to see whether sub-harmonic oscillation occurs and whether the frequency bandwidth becomes constant even with changes in the input voltage V_{in} applied to the converter and the output voltage V_{out} derived from the converter. Fig. 9 shows the frequency characteristics of the voltage gain and the phase with different values of V_{in} and V_{out}. The transfer function between v_i to v_{out} becomes the product of equation (16) and equation (28). Equation (28) is similar to the transfer function of the lag-lead filter. No sub-harmonic oscillation is seen in Fig. 9. Although the voltage gain changes slightly depending on V_{in}, the phase of the loop does not change at all. This means that curves of the voltage gain in Fig. 9 all have the same frequency bandwidth of $f_s/2$, where f_s is 4 MHz. The voltage gain dependency derives from the Z_{CF} change as seen in equation (26).

Next, the transfer function of the whole control loop shown in Fig. 8 is calculated. Figure 10 shows the frequency characteristics of the loop from v_{out} to v_{out}, which is the open-loop transfer function. In this case, the voltage feedback loop, which is composed of β and $A_{err}(s)$ in Fig. 8, is added to the analysis that is performed in Fig. 9. The circuit of this voltage feedback loop is already shown in Fig. 1. $\beta(0.21)$ is the voltage-dividing ratio by resistors $R_{f1}(380 \text{k}\Omega)$ and $R_{f2}(100 \text{k}\Omega)$. $A_{err}(s)$ is the small signal transfer function of the error amplifier; it is determined by a capacitor $C_e(20 \text{pF})$ and a resistor $R_e(1200 \text{k}\Omega)$ in series between the output terminal and the negative input terminal of the error amplifier. V_{in} and V_{out} are chosen to be 3.6 V and 2.4 V, respectively.

Figure 10 also ensures the stability of the loop in that no sub-harmonic oscillation is seen. As the bandwidth of

For the first step, we calculated the transfer function between v_i to v_{out} to see whether sub-harmonic oscillation occurs and whether the frequency bandwidth becomes constant even with changes in the input voltage V_{in} applied to the converter and the output voltage V_{out} derived from the converter. Fig. 9 shows the frequency characteristics of the voltage gain and the phase with different values of V_{in} and V_{out}. The transfer function between v_i to v_{out} becomes the product of equation (16) and equation (28). Equation (28) is similar to the transfer function of the lag-lead filter. No sub-harmonic oscillation is seen in Fig. 9. Although the voltage gain changes slightly depending on V_{in}, the phase of the loop does not change at all. This means that curves of the voltage gain in Fig. 9 all have the same frequency bandwidth of $f_s/2$, where f_s is 4 MHz. The voltage gain dependency derives from the Z_{CF} change as seen in equation (26).

Next, the transfer function of the whole control loop shown in Fig. 8 is calculated. Figure 10 shows the frequency characteristics of the loop from v_{out} to v_{out}, which is the open-loop transfer function. In this case, the voltage feedback loop, which is composed of β and $A_{err}(s)$ in Fig. 8, is added to the analysis that is performed in Fig. 9. The circuit of this voltage feedback loop is already shown in Fig. 1. $\beta(0.21)$ is the voltage-dividing ratio by resistors $R_{f1}(380 \text{k}\Omega)$ and $R_{f2}(100 \text{k}\Omega)$. $A_{err}(s)$ is the small signal transfer function of the error amplifier; it is determined by a capacitor $C_e(20 \text{pF})$ and a resistor $R_e(1200 \text{k}\Omega)$ in series between the output terminal and the negative input terminal of the error amplifier. V_{in} and V_{out} are chosen to be 3.6 V and 2.4 V, respectively.

Figure 10 also ensures the stability of the loop in that no sub-harmonic oscillation is seen. As the bandwidth of

For the first step, we calculated the transfer function between v_i to v_{out} to see whether sub-harmonic oscillation occurs and whether the frequency bandwidth becomes constant even with changes in the input voltage V_{in} applied to the converter and the output voltage V_{out} derived from the converter. Fig. 9 shows the frequency characteristics of the voltage gain and the phase with different values of V_{in} and V_{out}. The transfer function between v_i to v_{out} becomes the product of equation (16) and equation (28). Equation (28) is similar to the transfer function of the lag-lead filter. No sub-harmonic oscillation is seen in Fig. 9. Although the voltage gain changes slightly depending on V_{in}, the phase of the loop does not change at all. This means that curves of the voltage gain in Fig. 9 all have the same frequency bandwidth of $f_s/2$, where f_s is 4 MHz. The voltage gain dependency derives from the Z_{CF} change as seen in equation (26).

Next, the transfer function of the whole control loop shown in Fig. 8 is calculated. Figure 10 shows the frequency characteristics of the loop from v_{out} to v_{out}, which is the open-loop transfer function. In this case, the voltage feedback loop, which is composed of β and $A_{err}(s)$ in Fig. 8, is added to the analysis that is performed in Fig. 9. The circuit of this voltage feedback loop is already shown in Fig. 1. $\beta(0.21)$ is the voltage-dividing ratio by resistors $R_{f1}(380 \text{k}\Omega)$ and $R_{f2}(100 \text{k}\Omega)$. $A_{err}(s)$ is the small signal transfer function of the error amplifier; it is determined by a capacitor $C_e(20 \text{pF})$ and a resistor $R_e(1200 \text{k}\Omega)$ in series between the output terminal and the negative input terminal of the error amplifier. V_{in} and V_{out} are chosen to be 3.6 V and 2.4 V, respectively.

Figure 10 also ensures the stability of the loop in that no sub-harmonic oscillation is seen. As the bandwidth of
Fig. 10 Open loop transfer function characteristics of the designed PWM buck DC-DC converter with current-mode control.

the voltage feedback loop is chosen to be small relative to \(f_s / 2 \) so that it does not cause the degradation of the loop’s stability, the voltage gain from \(v_{\text{out}} \) to \(v_{\text{out}} \) also decreases at a frequency below \(f_s / 2 \). However, note that this degradation is due to the voltage feedback loop and that no degradation occurs in the current feedback loop. The gain margin at the frequency where the phase shift becomes 180 degrees is about 20 dB as shown in Fig. 10.

7. Simulation Results

A SPICE simulation has been carried out in order to establish the correct and stable operation of the designed PWM buck DC-DC converter using 0.6 \(\mu \)m CMOS device parameters. Figure 11 shows the results. \(V_{\text{in}} \) and \(V_{\text{out}} \) are chosen to be 3.6 V and 2.4 V, respectively. Figure 11(a) shows voltage waveforms at terminal \(N_{\text{LX}} \) with a solid line and at \(V_{\text{out}} \) with a dashed line shown in Fig. 1. Fig. 11(b) shows the waveform of the current that flows through the external inductor \(L \). No undesired phenomena such as sub-harmonic oscillation can be seen. Fig. 11(c) shows voltage waveforms of \(V_i \) with a solid line and \(V_c \) with a dashed line shown in Fig. 1; \(V_i \) is the combined voltage from outputs of the current sensing circuit and the second-order slope compensation circuit.

When the power PMOS transistor turns on, a large voltage spike noise is generated at node \(N_{\text{LX}} \) as shown in Fig. 11(a). However, no spikes can be seen in \(V_i \) waveform as shown in Fig. 11(c). The \(V_i \) increases with time, accompanied by a quadratic change. When \(V_i \) exceeds \(V_c \), the power PMOS transistor turns off and \(V_i \) is reset to bias voltage. All these figures verify the correct and stable operation.

8. Conclusion

The small signal transfer function of a PWM buck DC-DC converter with current-mode control is analyzed. We proposed the use of second-order slope compensation to avoid the output voltage dependency of the stability and the frequency bandwidth of the current feedback loop. The SPICE simulation verified the effectiveness of the method.

References

Hiroki Sakurai received the B.E. and M.E. degrees in 2002 and 2004 from Chuo University, Tokyo, Japan. He immediately entered the Graduate School of Electrical, Electronic, and Communication Engineering at Chuo University, where he is developing new circuits for mixed signal high-speed LSIs. Mr. Sakurai is the student member of the Institute of Electrical and Electronics Engineers, Japan.

Yasuhiro Sugimoto received the B.E. degree from Tokyo Institute of Technology, Tokyo, Japan, M.E. degree from University of Michigan, Ann Arbor, Michigan, and Doctor of Engineering degree from Tokyo Institute of Technology, Tokyo, Japan, in 1973, 1980, and 1991, respectively. He joined Toshiba Semiconductor Group in 1973, and engaged in the development of analog VLSIs. Since 1992, he has been with the Faculty of Science and Engineering, Chuo University where he is now a professor in the Department of Electrical, Electronic, and Communication Engineering. His main interest is the design and development of new circuits in mixed-signal and RF LSIs. He is the recipient of the 1989 Best Papers Award of European Solid-State Circuits Conference and the 1998 IEICE Best Papers Award. He is the author of three books. Dr. Sugimoto is the member of the Institute of Electrical and Electronics Engineers, the Institute of Electrical Engineers of Japan and the Japan Consulting Engineers Association.